Existence of a Nontrivial Solution to a Strongly Indefinite Semilinear Equation
نویسندگان
چکیده
Under general hypotheses, we prove the existence of a nontrivial solution for the equation Lu = N(u), where u belongs to a Hilbert space H , L is an invertible continuous selfadjoint operator, and N is superlinear. We are particularly interested in the case where L is strongly indefinite and N is not compact. We apply the result to the Choquard-Pekar equation -Au(x)+p(x)u(x) = u(x) f U <'y\ dy, we//'(R3), w/0, J*> \x-y\ where p e L-°°(K3) is a periodic function.
منابع مشابه
The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملExistence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کاملExistence of solution for a singular elliptic equation with critical Sobolev-Hardy exponents
Via the variational methods, we prove the existence of a nontrivial solution to a singular semilinear elliptic equation with critical Sobolev-Hardy exponent under certain conditions .
متن کاملMulti-bump Solutions for a Strongly Indefinite Semilinear Schrödinger Equation Without Symmetry or convexity Assumptions
In this paper, we study the following semilinear Schrödinger equation with periodic coefficient: −△u + V (x)u = f(x, u), u ∈ H1(RN). The functional corresponding to this equation possesses strongly indefinite structure. The nonlinear term f(x, t) satisfies some superlinear growth conditions and need not be odd or increasing strictly in t. Using a new variational reduction method and a generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010